免费下载书籍地址:PDF下载地址
精美图片

Hadoop应用架构 (美)马克·格罗弗(Mark Grover) 等 著书籍详细信息
- ISBN:9787564170011
- 作者:暂无作者
- 出版社:暂无出版社
- 出版时间:2017-02
- 页数:暂无页数
- 价格:56.90
- 纸张:轻型纸
- 装帧:平装-胶订
- 开本:16开
- 语言:未知
- 丛书:暂无丛书
- TAG:暂无
- 豆瓣评分:暂无豆瓣评分
寄语:
新华书店正版,关注店铺成为会员可享店铺专属优惠,团购客户请咨询在线客服!
内容简介:
在使用ApacheHadoop设计端到端数据管理解决方案时,获得专家级指导。当其它很多渠道还停留在解释Hadoop生态系统中该如何使用各种纷纭复杂的组件时,这本专注实践的书已带领您从架构的整体角度思考,这样的角度对于您的特别应用场景而言,是必不可少的。它将所有组件紧密结合在一起,形成完整有针对性的应用程序。为了增强学习效果,本书第二部分提供了各种详细的架构案例,涵盖部分很常见的Hadoop应用场景。无论您在设计一个新的Hadoop应用,或者正计划将Hadoop整合到现有的数据基础架构中,本书都将在整个过程中提供技巧性的导引。
书籍目录:
Foreword
Preface
Part Ⅰ.Architectural Considerations for Hadoop Applications
1. Data Modeling in Hadoop
Data Storage Options
Standard File Formats
Hadoop File Types
Serialization Formats
Columnar Formats
Compression
HDFS Schema Design
Location of HDFS Files
Advanced HDFS Schema Design
HDFS Schema Design Summary
HBase Schema Design
Row Key
Timestamp
Hops
Tables and Regions
Using Columns
Using Column Families
Time-to-Live
Managing Metadata
What Is Metadata?
Why Care About Metadata?
Where to Store Metadata?
Examples of Managing Metadata
Limitations of the Hive Metastore and HCatalog
Other Ways of Storing Metadata
Conclusion
2. Data Movement
Data Ingestion Considerations
Timeliness of Data Ingestion
Incremental Updates
Access Patterns
Original Source System and Data Structure
Transformations
Network Bottlenecks
Network Security
Push or Pull
Failure Handling
Level of Complexity
Data Ingestion Options
File Transfers
Considerations for File Transfers versus Other Ingest Methods
Sqoop: Batch Transfer Between Hadoop and Relational Databases
Flume: Event-Based Data Collection and Processing
Kafka
Data Extraction
Conclusion
3. Processing Data in Hadoop
MapReduce
MapReduce Overview
Example for MapReduce
When to Use MapReduce
Spark
Spark Overview
Overview of Spark Components
Basic Spark Concepts
Benefits of Using Spark
Spark Example
When to Use Spark
Abstractions
Pig
Pig Example
When to Use Pig
Crunch
Crunch Example
When to Use Crunch
Cascading
Cascading Example
When to Use Cascading
Hive
Hive Overview
Example of Hive Code
When to Use Hive
Impala
Impala Overview
Speed-Oriented Design
Impala Example
When to Use Impala
Conclusion
4. Common Hadoop Processing Patterns
Pattern: Removing Duplicate Records by Primary Key
Data Generation for Deduplication Example
Code Example: Spark Deduplication in Scala
Code Example: Deduplication in SQL
Pattern: Windowing Analysis
Data Generation for Windowing Analysis Example
Code Example: Peaks and Valleys in Spark
Code Example: Peaks and Valleys in SQL
Pattern: Time Series Modifications
Use HBase and Versioning
Use HBase with a RowKey of RecordKey and StartTime
Use HDFS and Rewrite the Whole Table
Use Partitions on HDFS for Current and Historical Records
Data Generation for Time Series Example
Code Example: Time Series in Spark
Code Example: Time Series in SQL
Conclusion
5. Graph Processing on Hadoop
What Is a Graph?
What Is Graph Processing?
How Do You Process a Graph in a Distributed System?
The Bulk Synchronous Parallel Model
BSP by Example
Giraph
Read and Partition the Data
Batch Process the Graph with BSP
Write the Graph Back to Disk
Putting It All Together
When Should You Use Giraph?
GraphX
Just Another RDD
GraphX Pregel Interface
vprog0
sendMessage0
mergeMessage0
Which Tool to Use?
Conclusion
6. Orchestration
Why We Need Workflow Orchestration
The Limits of Scripting
The Enterprise Job Scheduler and Hadoop
Orchestration Frameworks in the Hadoop Ecosystem
Oozie Terminology
Oozie Overview
Oozie Workflow
Workflow Patterns
Point-to-Point Workflow
Fan- Out Workflow
Capture-and-Decide Workflow
Parameterizing Workflows
Classpath Definition
Scheduling Patterns
Frequency Scheduling
Time and Data Triggers
Executing Workflows
Conclusion
7. Near-Real-Time Processing with Hadoop
Stream Processing
Apache Storm
Storm High-Level Architecture
Storm Topologies
Tuples and Streams
Spouts and Bolts
Stream Groupings
Reliability of Storm Applications
Exactly-Once Processing
Fault Tolerance
Integrating Storm with HDFS
Integrating Storm with HBase
Storm Example: Simple Moving Average
Evaluating Storm
Trident
Trident Example: Simple Moving Average
Evaluating Trident
Spark Streaming
Overview of Spark Streaming
Spark Streaming Example: Simple Count
Spark Streaming Example: Multiple Inputs
Spark Streaming Example: Maintaining State
Spark Streaming Example: Windowing
Spark Streaming Example: Streaming versus ETL Code
Evaluating Spark Streaming
Flume Interceptors
Which Tool to Use?
Low-Latency Enrichment, Validation, Alerting, and Ingestion
NRT Counting, Rolling Averages, and Iterative Processing
Complex Data Pipelines
Conclusion
Part Ⅱ. Case Studies
8. Clickstream Analysis
Defining the Use Case
Using Hadoop for Clickstream Analysis
Design Overview
Storage
Ingestion
The Client Tier
The Collector Tier
Processing
Data Deduplication
Sessionization
Analyzing
Orchestration
Conclusion
9. Fraud Detection
Continuous Improvement
Taking Action
Architectural Requirements of Fraud Detection Systems
Introducing Our Use Case
High-Level Design
Client Architecture
Profile Storage and Retrieval
Caching
HBase Data Definition
Delivering Transaction Status: Approved or Denied?
Ingest
Path Between the Client and Flume
Near-Real-Time and Exploratory Analytics
Near-Real-Time Processing
Exploratory Analytics
What About Other Architectures?
Flume Interceptors
Kafka to Storm or Spark Streaming
External Business Rules Engine
Conclusion
10. Data Warehouse
Using Hadoop for Data Warehousing
Defining the Use Case
OLTP Schema
Data Warehouse: Introduction and Terminology
Data Warehousing with Hadoop
High-Level Design
Data Modeling and Storage
Ingestion
Data Processing and Access
Aggregations
Data Export
Orchestration
Conclusion
A. Joins in Impala
Index
作者介绍:
Mark Grover,是Apache Bigtop的代码贡献者以及ApacheSentry的项目管理委员会成员和代码贡献者。Ted Malaska,是Cloude ra的不错应用架构师,帮助客户使用Hadoop及其生态系统。
Jonathan Seidman,是Cloudera的应用架构师,帮助合作伙伴把他们的解决方案集成到Cloudera的软件栈中。
Gwen Shapira,是Cloudera的应用架构师,在为客户设计可扩展的数据架构方面有15年的经验。
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
在线阅读地址:Hadoop应用架构 (美)马克·格罗弗(Mark Grover) 等 著在线阅读
在线听书地址:Hadoop应用架构 (美)马克·格罗弗(Mark Grover) 等 著在线收听
在线购买地址:Hadoop应用架构 (美)马克·格罗弗(Mark Grover) 等 著在线购买
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
暂无其它内容!
书籍真实打分
故事情节:8分
人物塑造:3分
主题深度:8分
文字风格:4分
语言运用:5分
文笔流畅:3分
思想传递:8分
知识深度:5分
知识广度:5分
实用性:9分
章节划分:9分
结构布局:6分
新颖与独特:3分
情感共鸣:9分
引人入胜:3分
现实相关:4分
沉浸感:6分
事实准确性:6分
文化贡献:3分
网站评分
书籍多样性:9分
书籍信息完全性:9分
网站更新速度:4分
使用便利性:3分
书籍清晰度:4分
书籍格式兼容性:7分
是否包含广告:9分
加载速度:7分
安全性:8分
稳定性:8分
搜索功能:6分
下载便捷性:7分
下载点评
- 少量广告(62+)
- 体验满分(546+)
- 格式多(430+)
- 在线转格式(208+)
- 差评少(596+)
- 经典(186+)
- 好评(566+)
- 图书多(224+)
- 一星好评(207+)
- 引人入胜(319+)
- 无缺页(69+)
下载评价
网友 冯***卉:听说内置一千多万的书籍,不知道真假的
网友 后***之:强烈推荐!无论下载速度还是书籍内容都没话说 真的很良心!
网友 冷***洁:不错,用着很方便
网友 宓***莉:不仅速度快,而且内容无盗版痕迹。
网友 石***烟:还可以吧,毕竟也是要成本的,付费应该的,更何况下载速度还挺快的
网友 堵***格:OK,还可以
网友 沈***松:挺好的,不错
网友 寇***音:好,真的挺使用的!
网友 菱***兰:特好。有好多书
网友 郗***兰:网站体验不错
网友 石***致:挺实用的,给个赞!希望越来越好,一直支持。
网友 宫***玉:我说完了。
网友 步***青:。。。。。好
网友 师***怀:好是好,要是能免费下就好了
网友 曾***文:五星好评哦