免费下载书籍地址:PDF下载地址
精美图片

盲信号处理英文版 史习智 著作书籍详细信息
- ISBN:9787313058201
- 作者:暂无作者
- 出版社:暂无出版社
- 出版时间:2010-09
- 页数:368
- 价格:114.00
- 纸张:轻型纸
- 装帧:平装-胶订
- 开本:16开
- 语言:未知
- 丛书:暂无丛书
- TAG:暂无
- 豆瓣评分:暂无豆瓣评分
寄语:
新华书店正版,关注店铺成为会员可享店铺专属优惠,团购客户请咨询在线客服!
内容简介:
《盲信号处理:理论与实践(英文)》内容简介:BlindSignalProcessingTheoryandPracticenotonlyintroducesrelatedfundamentalmathematics,butalsoreflectsthenumerousadvancesinthefield,suchasprobabilitydensityestimation-basedprocessingalgorithms,underdeterminedmodels,complexvaluemethods,uncertaintyoforderintheseparationofconvolutivemixturesinfrequencydomains,andfeatureextractionusingIndependentComponentAnalysis(ICA).Attheendofthebook,resultsfromastudyconductedatShanghaiJiaoTongUniversityintheareasofspeechsignalprocessing,underwatersignals,imagefeatureextraction,datacompression,andthelikearediscussed.
Thisbookwillbeofparticularinteresttoadvancedundergraduatestudents,graduatestudents,universityinstructorsandresearchscientistsinrelateddisciplines.XizhiShiisaProfessoratShanghaiJiaoTongUniversity.
书籍目录:
Chapter1Introduction
1.1Introduction
1.2BlindSourceSeparation
1.3IndependentComponentAnalysis(ICA)
1.4TheHistoricalDevelopmentandResearchProspectofBlindSignalProcessing
References
Chapter2MathematicalDeionofBlindSignalProcessing
2.1RandomProcessandProbabilityDistribution
2.2EstimationTheory
2.3InformationTheory
2.4Higher-OrderStatistics
2.5PreprocessingofSignal
2.6ComplexNonlinearFunction
2.7EvaluationIndex
References
Chapter3IndependentComponentAnalysis
3.1ProblemStatementandAssumptions
3.2ContrastFunctions
3.3InformationMaximizationMethodofICA
3.4MaximumLikelihoodMethodandCommonLearningRule
3.5FastICAAlgorithm
3.6NaturalGradientMethod
3.7HiddenMarkovIndependentComponentAnalysis
References
Chapter4NonlinearPCA&FeatureExtraction
4.1PrincipalComponentAnalysis&InfinitesimalAnalysis
4.2NonlinearPCAandBlindSourceSeparation
4.3KernelPCA
4.4NeuralNetworksMethodofNonlinearPCAandNonlinearComplexPCA
References
Chapter5NonlinearICA
5.1NonlinearModelandSourceSeparation
5.2LearningAlgorithm
5.3ExtendedGaussianizationMethodofPostNonlinearBlindSeparation
5.4NeuralNetworkMethodforNonlinearICA
5.5GeneticAlgorithmofNonlinearICASolution
5.6ApplicationExamplesofNonlinearICA
References
Chapter6ConvolutiveMixturesandBlindDeconvolution
6.1DeionofIssues
6.2ConvolutiveMixturesinTime-Domain
6.3ConvolutiveMixturesAlgorithmsinFrequency-Domain
6.4Frequency-DomainBlindSeparationofSpeechConvolutiveMixtures
6.5BussgangMethod
6.6Multi-channelBlindDeconvolution
References
Chapter7BlindProcessingAlgorithmBasedonProbabilityDensityEstimation
7.1AdvancingtheProblem
7.2NonparametricEstimationofProbabilityDensityFunction
7.3EstimationofEvaluationFunction
7.4BlindSeparationAlgorithmBasedonProbabilityDensityEstimation
7.5ProbabilityDensityEstimationofGaussianMixturesModel
7.6BlindDeconvolutionAlgorithmBasedonProbabilityDensityFunctionEstimation
7.7On-lineAlgorithmofNonparametricDensityEstimation
References
Chapter8JointApproximateDiagonalizationMethod
8.1Introduction
8.2JADAlgorithmofFrequency-DomainFeature
8.3JADAlgorithmofTime-FrequencyFeature
8.4JointApproximateBlockDiagonalizationAlgorithmofConvolutiveMixtures
8.5JADMethodBasedonCayleyTransformation
8.6JointDiagonalizationandJointNon-DiagonalizationMethod
8.7NonparametricDensityEstimatingSeparatingMethodBasedonTime-FrequencyAnalysis
References
Chapter9ExtensionofBlindSignalProcessing
9.1BlindSignalExtraction
9.2FromProjectionPursuitTechnologytoNonparametricDensityEstimation-BasedICA
9.3Second-OrderStatisticsBasedConvolutiveMixturesSeparationAlgorithm
9.4BlindSeparationforFewerSensorsthanSources——UnderdeterminedModel
9.5FastlCASeparationAlgorithmofComplexNumbersinConvolutiveMixtures
9.6On-lineComplexICAAlgorithmBasedonUncorrelatedCharacteristicsofComplexVectors
9.7ICA-BasedWigner-VilleDistribution
9.8ICAFeatureExtraction
9.9ConstrainedICA
9.10ParticleFilteringBasedNonlinearandNoisyICA
References
Chapter10DataAnalysisandApplicationStudy
10.1TargetEnhancementinActiveSonarDetection
10.2ECGArtifactsRejectioninEEGwithICA
10.3ExperimentonUnderdeterminedBlindSeparationofASpeechSignal
10.4ICAinHumanFaceRecognition
10.5ICAinDataCompression
10.6IndependentComponentAnalysisforFunctionalMRIDataAnalysis
10.7SpeechSeparationforAutomaticSpeechRecognitionSystem
10.8IndependentComponentAnalysisofMicroarrayGeneExpressionDataintheStudyofAlzheimer'sDisease(AD)
References
Index
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
在线阅读地址:盲信号处理英文版 史习智 著作在线阅读
在线听书地址:盲信号处理英文版 史习智 著作在线收听
在线购买地址:盲信号处理英文版 史习智 著作在线购买
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
编辑推荐
《盲信号处理:理论与实践(英文)》是由上海交通大学出版社出版的。
书籍介绍
《盲信号处理:理论与实践(英文)》内容简介:Blind Signal Processing Theory and Practice not only introduces related fundamental mathematics, but also reflects the numerous advances in the field, such as probability density estimation-based processing algorithms,underdetermined models, complex value methods, uncertainty of order in the separation of convolutive mixtures in frequency domains, and feature extraction using Independent Component Analysis (ICA). At the end of the book, results from a study conducted at Shanghai Jiao Tong University in the areas of speech signal processing, underwater signals, image feature extraction, data compression, and the like are discussed.
This book will be of particular interest to advanced undergraduate students,graduate students, university instructors and research scientists in related disciplines. Xizhi Shi is a Professor at Shanghai Jiao Tong University.
书籍真实打分
故事情节:9分
人物塑造:9分
主题深度:3分
文字风格:4分
语言运用:9分
文笔流畅:8分
思想传递:8分
知识深度:7分
知识广度:6分
实用性:5分
章节划分:5分
结构布局:7分
新颖与独特:7分
情感共鸣:8分
引人入胜:5分
现实相关:4分
沉浸感:7分
事实准确性:4分
文化贡献:7分
网站评分
书籍多样性:4分
书籍信息完全性:6分
网站更新速度:3分
使用便利性:7分
书籍清晰度:5分
书籍格式兼容性:8分
是否包含广告:6分
加载速度:6分
安全性:4分
稳定性:3分
搜索功能:6分
下载便捷性:5分
下载点评
- 差评少(359+)
- 不亏(197+)
- 简单(362+)
- 小说多(545+)
- 服务好(180+)
- 下载快(674+)
- 内容齐全(392+)
- 值得下载(307+)
- 收费(268+)
- mobi(596+)
- 章节完整(535+)
下载评价
网友 石***烟:还可以吧,毕竟也是要成本的,付费应该的,更何况下载速度还挺快的
网友 养***秋:我是新来的考古学家
网友 曾***文:五星好评哦
网友 焦***山:不错。。。。。
网友 堵***洁:好用,支持
网友 孙***夏:中评,比上不足比下有余
网友 通***蕊:五颗星、五颗星,大赞还觉得不错!~~
网友 常***翠:哈哈哈哈哈哈
网友 融***华:下载速度还可以
网友 汪***豪:太棒了,我想要azw3的都有呀!!!
网友 师***怡:说的好不如用的好,真心很好。越来越完美
网友 林***艳:很好,能找到很多平常找不到的书。